

T-cell abnormalities in bipolar disorder

Magdalini Ioannou, MPharm, MSc

Why the immune system?

The immune privileged brain-not what we thought

T-cell surveillance of the human brain in health and multiple sclerosis

Joost Smolders^{1,2} ○ · Marvin M. van Luijn³ ○ · Cheng-Chih Hsiao^{1,4} ○ · Jörg Hamann^{1,4} ○

Received: 4 January 2022 / Accepted: 18 February 2022 / Published online: 1 April 2022 © The Author(s) 2022

> Nat Immunol. 2020 Aug;21(8):938-949. doi: 10.1038/s41590-020-0711-8. Epub 2020 Jun 22

Peripherally induced brain tissue-resident memory CD8⁺ T cells mediate protection against CNS infection

Stina L Urban 1 , Isaac J Jensen $^{1/2}$, Qiang Shan 3 , Lecia L Pewe 1 , Hai-Hui Xue $^{3/4}$, Vladimir P Badovinac $^{1/2}$ 5 , John T Harty $^{6/7}$

Affiliations + expand

PMID: 32572242 PMCID: PMC7381383 DOI: 10.1038/s41590-020-0711-8

Review | Open access | Published: 02 December 2014

T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases

Hugo González & Rodrigo Pacheco [™]

Journal of Neuroinflammation 11, Article number: 201 (2014) | Cite this article

9565 Accesses | 178 Citations | 6 Altmetric | Metrics

> Br J Pharmacol. 2024 Mar;181(6):799-815. doi: 10.1111/bph.16214. Epub 2023 Sep 2.

Update on the role of T cells in cognitive impairment

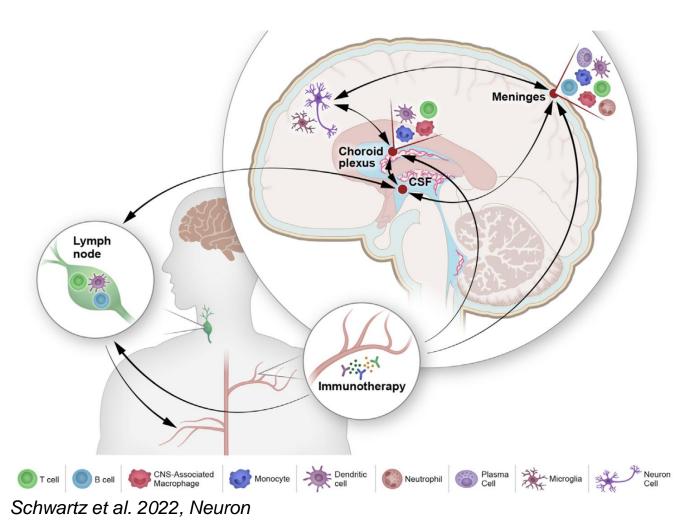
Ignacio Ruiz-Fernández ¹, Raquel Sánchez-Díaz ¹, Enrique Ortega-Sollero ¹, Pilar Martín ¹ ²

Affiliations + expand

PMID: 37559406 DOI: 10.1111/bph.16214

- Peripheral immune cells play a role in brain repair
- Peripheral immune cells play a role in higher brain function
- Dysregulation of the immune system plays a role in neuroinflammation

Review Article | Published: 01 December 2023


Brain regulatory T cells

Adrian Liston [™], Emanuela Pasciuto [™], Denise C. Fitzgerald [™] & Lidia Yshii [™]

Nature Reviews Immunology 24, 326–337 (2024) | Cite this article

10k Accesses | 15 Citations | 92 Altmetric | Metrics

The immune privileged brain-not what we thought

Croese et al, 2021- Innate and adaptive immune cells reside in choroid plexus, meninges, and perivascular spaces, where they regulate leukocyte entry as needed.

Herisson et al, 2018-The brain connects to skull bone marrow for rapid immune cell delivery during injury or inflammation.

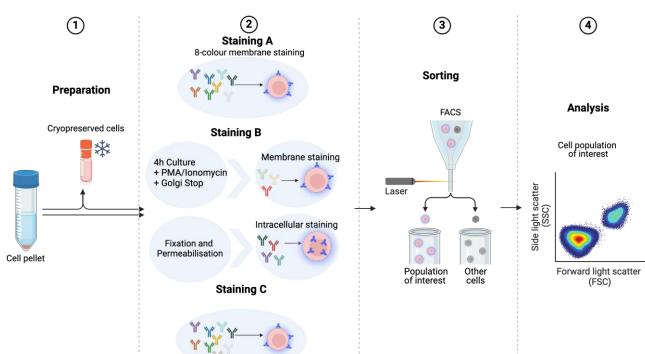
Louveau et al, 2018-The brain's meningeal lymphatics link to neck lymph nodes for immune surveillance and communication.

Immune abnormalities in psychiatric disorders: Current state of understanding

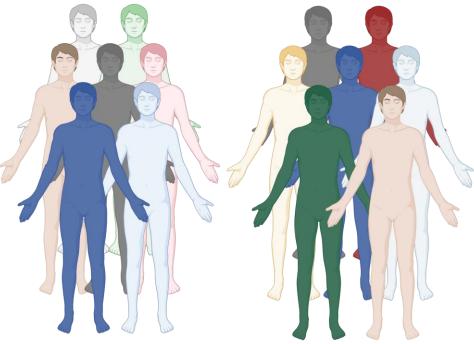
- Abnormal levels of peripheral proinflammatory cytokines
- T cell abnormalities
- Abnormal pro-inflammatory gene expression in circulating monocytes
- Microglial activation
- Immune abnormalities linked to greater symptom severity and
- Resistance to currently available treatments

Studying the immune abnormalities in BD

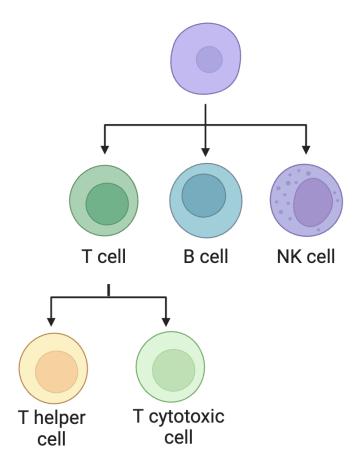
- Opportunities to better understand the disease and
- Potentially treat


Brain, Behavior, & Immunity - Health

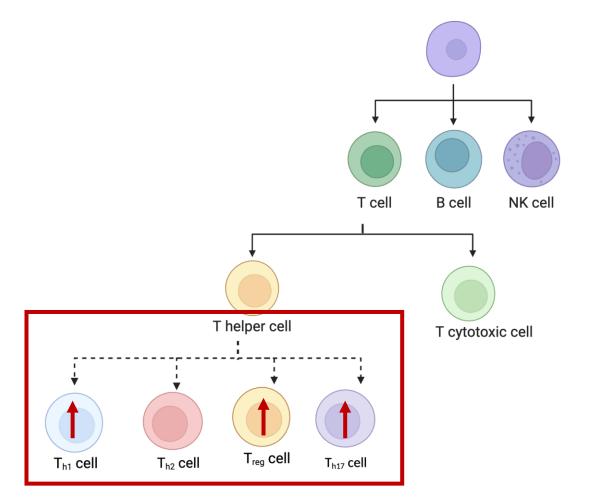
Volume 38, July 2024, 100764



Higher T central and lower effector memory cells in bipolar disorder: A differentiation abnormality?


Magdalini Ioannou ^a △ ☒, Maria S. Simon ^b, Jenny Borkent ^a, Annemarie Wijkhuijs ^c, Raf Berghmans ^d, Bartholomeus C.M. Haarman ^{a 1}, Hemmo A. Drexhage ^{c 1}

Bipolar Disorder (n=58) Healthy controls (n=113)

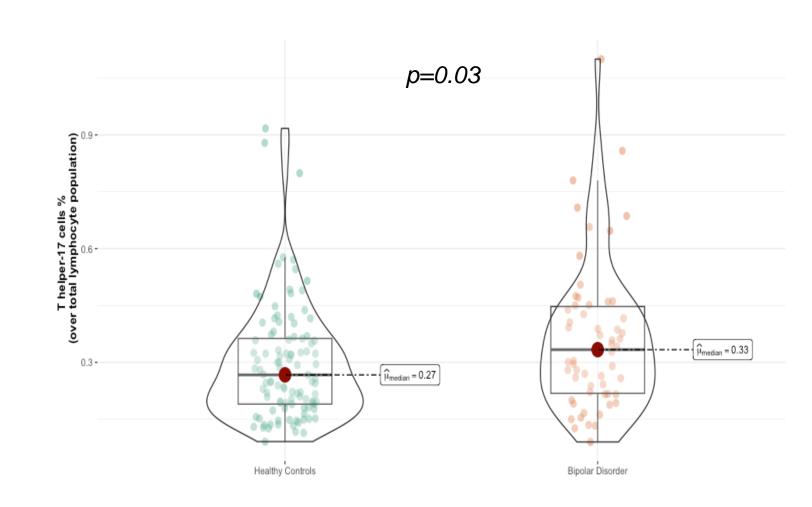


Staining A

	Healthy Controls	Bipolar Disorder	p-value	p-value age, sex, BMI adjusted
T cell%	59.6 (54.4, 65.1)	56.7 (49.4, 62.2)	0.03	0.4
B cell%	7.3 (5.8, 8.9)	7.0 (5.5, 9.3)	0.98	0.4
Natural killer cell%	8.3 (6.1, 11.6)	8.6 (6.8, 11.2)	0.5	0.5
T helper cell%	50.1 (±8.1)	48.0 (±9.1)	0.1	0.07
T cytotoxic cell%	17.0 (13.3, 20.8)	16.5 (12.0, 20.4)	0.3	1

Staining B

	Healthy Controls	Bipolar Disorder	p-value	p-value after age, sex, BMI adjustment
T _{h1} cell%	4.6 (3.0, 6.3)	5.2 (3.6, 7.1)	0.09	0.03
T _{h2} cell%	0.44 (0.35, 0.62)	0.42 (0.35, 0.64)	0.7	0.8
T _{h17} cell%	0.27 (0.19, 0.36)	0.33 (0.22,0.45)	0.02	0.04
T _{REGS} cell%	1.9 (1.5, 2.4)	2.4 (1.9, 3.1)	<0.001	0.003

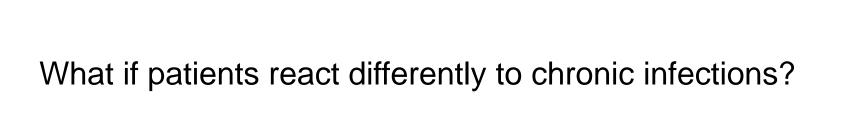

Thelper 17 cells

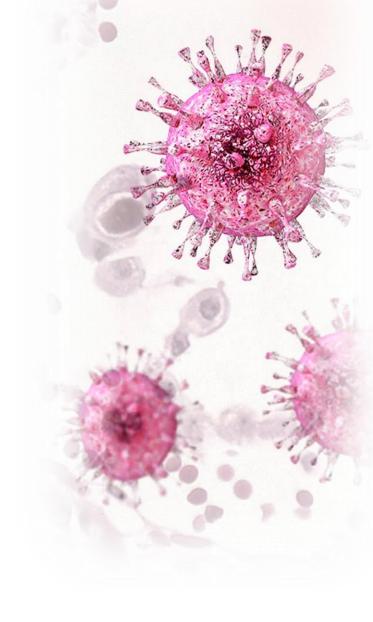
What are they?

- Strongly pro-inflammatory.
- Defence against bacteria, viruses, and fungi.
- Maintain mucosal barrier integrity with IL-17.
- Overactivation linked to chronic inflammatory and autoimmune diseases.

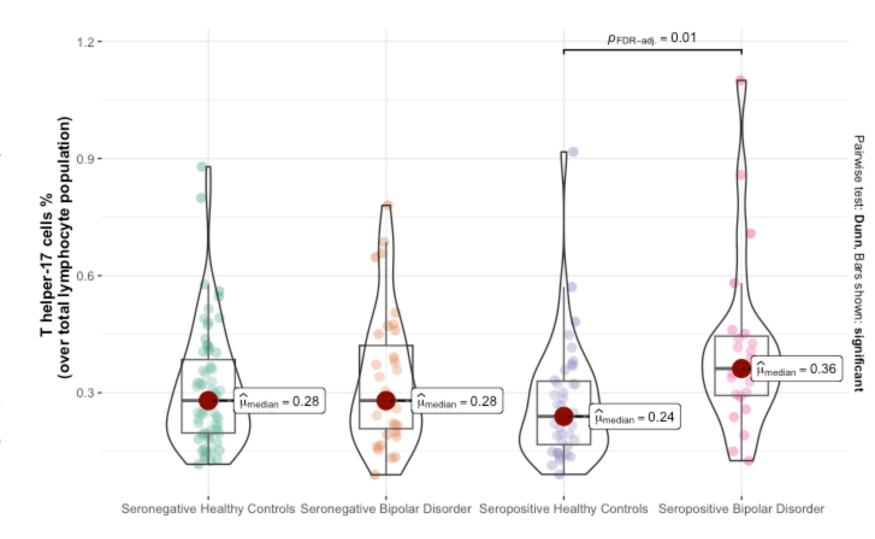
Findings in Bipolar Disorder

- Patients in a euthymic state show elevated Th17 levels compared to healthy controls.
- Consistent with previous findings in a cohort of 97 BD patients but not replicated in a smaller cohort (n=38).
- Elevated Th17 levels align with reported higher circulating IL-17 in BD patients in remission.



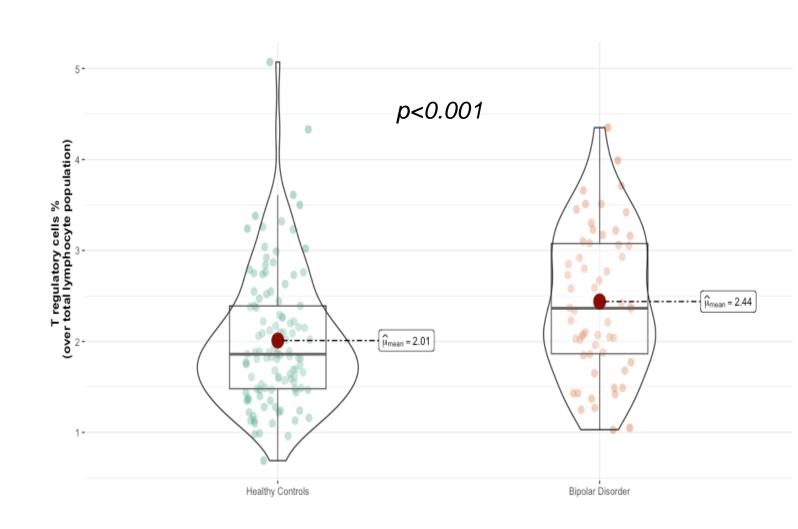

Maybe patients have higher prevalence of chronic infections?

Cytomegalovirus (CMV)

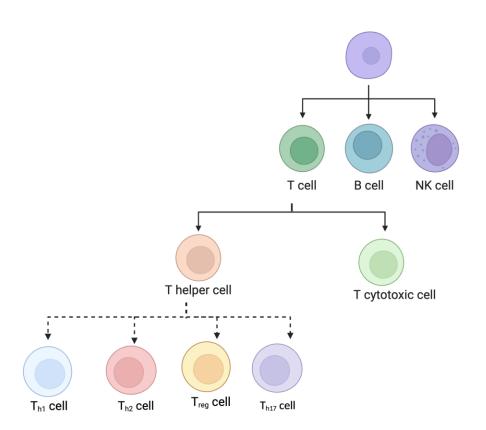

- Common virus
- Once infected, the body retains the virus for life
- It gets re-activated by inflammation, immunosuppression, and stress

	Healthy Controls	Bipolar Disorder	n valua	
	(n=113)	(n=58)	<i>p</i> -value	
CMV seropositive (%)	35.4%	39.7%	0.6	
Anti-CMV titers (U/ml)	5.2 (3.7, 32.4)	5.0 (3.1, 45.7)	0.9	

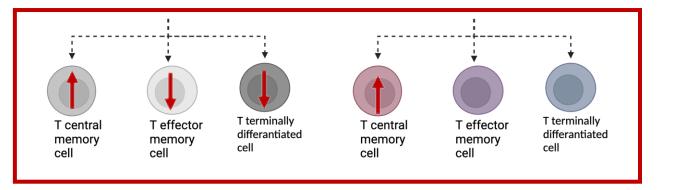
- Interaction between CMV and BD linked to a trend of increased T_{h17} levels.
- Stratified analysis shows CMVseropositive BD patients have significantly higher T_{h17} levels compared to CMV-seropositive HCs.
- Suggests BD patients may exhibit heightened T_{h17} responses to CMV infection.


T Regulatory Cells

What are they?


 Essential for maintaining immune homeostasis and preventing autoimmunity.

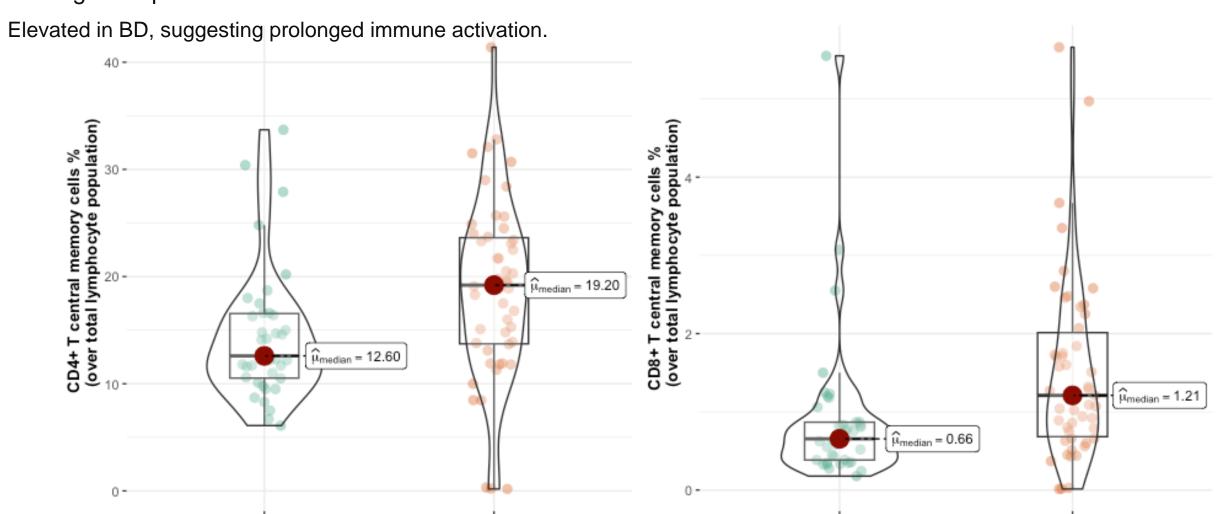
Findings in Bipolar Disorder


- Euthymic patients have elevated levels compared to healthy controls.
- This may reflect a compensatory mechanism to counteract heightened pro-inflammatory activity.
- Previous studies suggest the immuneregulatory reflex system could play a role in recovery from acute episodes.

Staining C

	Healthy Controls	Bipolar Disorder	p-value	p-value after age, sex, BMI
CD4 ⁺ T _{CM} cell%	12.6 (10.5, 16.6)	19.2 (13.7, 23.6)	0.001	adjustment 0.05
CD4 ⁺ T _{FM} cell%	6.0 (4.1, 7.8)	3.5 (2.7, 5.2)	<0.001	0.002
CD4 ⁺ T _{EMRA} cell%	1.5 (0.8, 2.5)	0.8 (0.5, 1.6)	0.004	0.04
CD8+T _{CM} cell%	0.7 (0.4, 0.9)	1.2 (0.7, 2.0)	<0.001	0.01
CD8+T _{EM} cell%	2.5 (1.6, 3.7)	2.4 (1.2, 3.9)	0.8	0.9
CD8+T _{EMRA} cell%	8.4 (7.4, 12.2)	9.2 (6.1, 14.2)	0.8	0.7

T central memory cells


What are they?

Long-lived cells in lymphoid organs that support T cell proliferation and activation upon antigen re-exposure.

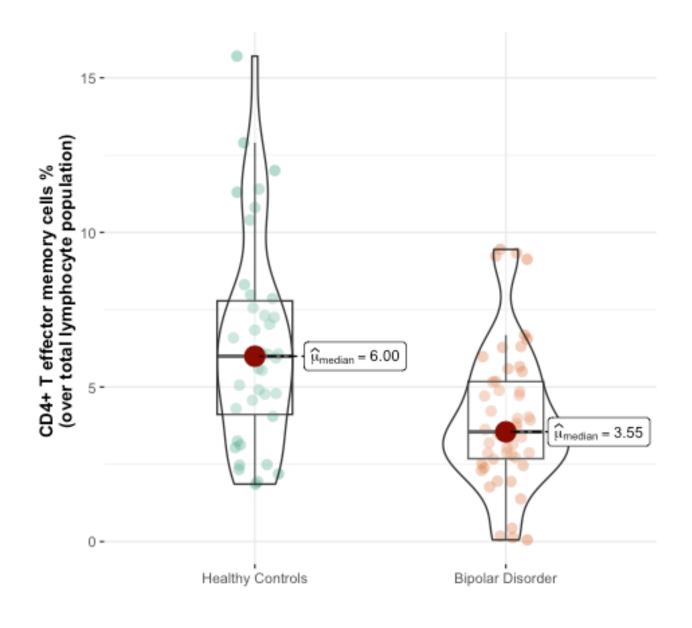
Bipolar Disorder

Findings in Bipolar Disorder

Healthy Controls

Healthy Controls

Bipolar Disorder

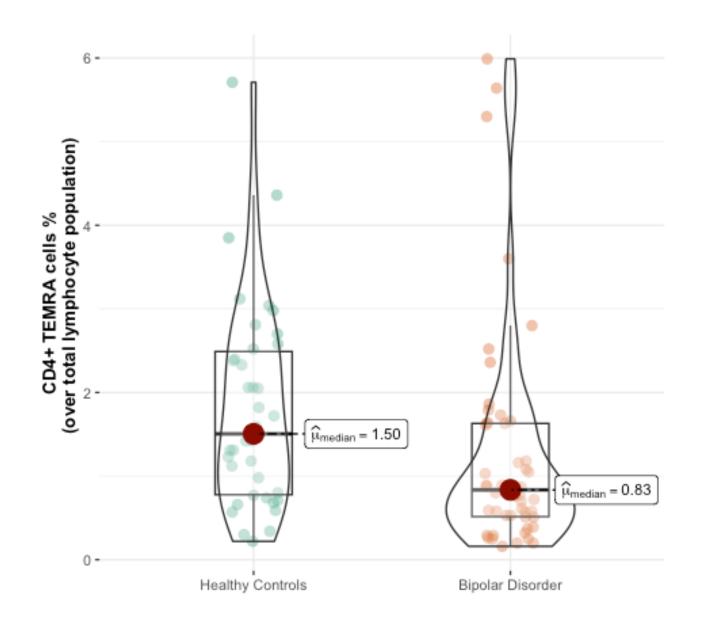

T effector memory cells

What are they?

Circulate in peripheral tissues and respond quickly to infection.

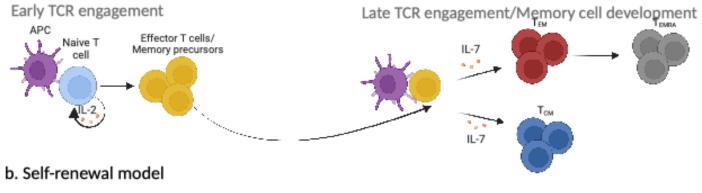
Findings in Bipolar Disorder

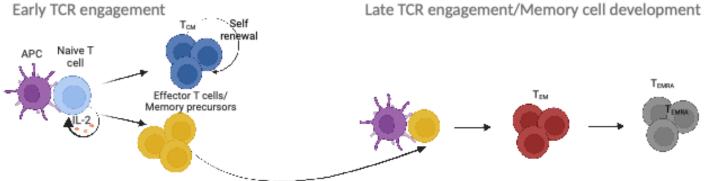
Reduced in BD. A differentiation abnormality?


TEMRA (Effector Memory RA+ T Cells)

What are they?

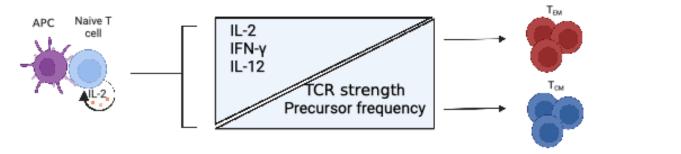
Terminally differentiated cells, critical for strong immune responses.


Findings in Bipolar Disorder


Reduced in BD. A differentiation abnormality?

A. Hypothesis on models of T cell differentiation

a. Linear model



B. Hypothesis on influencing factors of T memory cell apportioning

Early TCR engagement

Late TCR engagement/Memory cell development

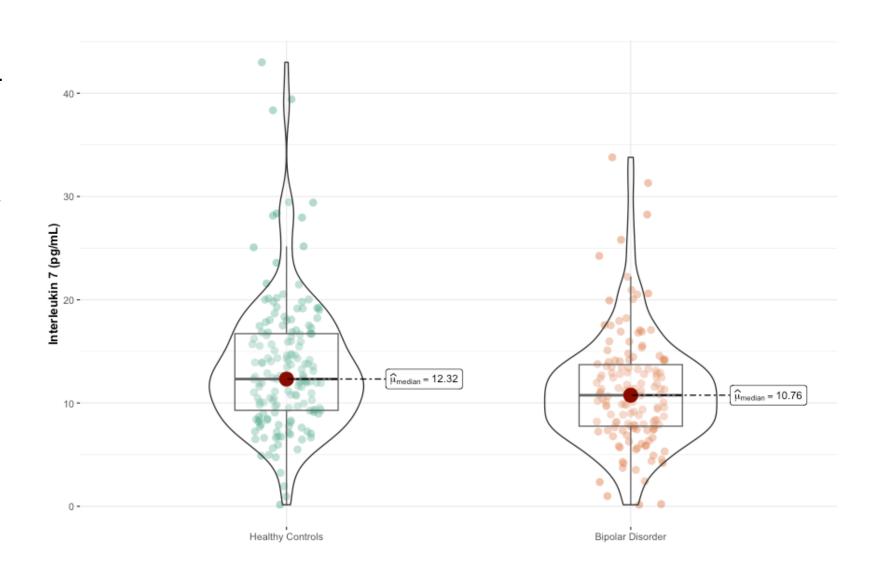
Interleukin 7

Role?

Essential cytokine for T-cell development.

Study Findings

IL-7 levels are significantly lower in BD patients compared to healthy controls.


Suggests impaired T-cell maturation in BD.

Therapeutic Potential

Experimental IL-7 therapies (e.g., rhIL7, Efineptakin-α) show promise in boosting T-cell counts in immune-deficient conditions.

Implications

Lower IL-7 may underlie T-cell dysregulation in BD, warranting further research into IL-7-based treatments.

Discussion

Key Findings

- Elevated T_{h17} and T_{REGS}.
- Interaction between BD diagnosis and CMV viral infection linked to T_{h17} skewing.
- Skewing towards central memory and away from effector memory populations. Differentiation abnormality?
- Lower IL-7 levels, suggesting impaired T-cell maturation.

Discussion

Future Directions

- T cell abnormalities. Do they precede the onset of BD?
- T cell abnormalities and their relationship with specific symptoms domains?
- T cell abnormalities and their relationship to physical comorbidities in BD?

